Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C46

Direct product G=N×Q with N=C22 and Q=C2×C46
dρLabelID
C23×C46368C2^3xC46368,42

Semidirect products G=N:Q with N=C22 and Q=C2×C46
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C46) = D4×C46φ: C2×C46/C46C2 ⊆ Aut C22184C2^2:(C2xC46)368,38

Non-split extensions G=N.Q with N=C22 and Q=C2×C46
extensionφ:Q→Aut NdρLabelID
C22.(C2×C46) = C4○D4×C23φ: C2×C46/C46C2 ⊆ Aut C221842C2^2.(C2xC46)368,40
C22.2(C2×C46) = C22⋊C4×C23central extension (φ=1)184C2^2.2(C2xC46)368,20
C22.3(C2×C46) = C4⋊C4×C23central extension (φ=1)368C2^2.3(C2xC46)368,21
C22.4(C2×C46) = Q8×C46central extension (φ=1)368C2^2.4(C2xC46)368,39

׿
×
𝔽